Localization of protein disulfide isomerase to the external surface of the platelet plasma membrane.

نویسندگان

  • D W Essex
  • K Chen
  • M Swiatkowska
چکیده

Protein disulfide isomerase (PDI) is an enzyme that catalyzes the formation as well as the isomerization of disulfide bonds. In this study, antibodies against PDI were used to show PDI antigen on the platelet surface by indirect immunofluorescence microscopy and by flow cytometry. The platelets were not activated, as evidenced by the absence of staining by an antibody against P-selectin. Permeabilized platelets showed little cytosolic PDI by indirect immunofluorescence microscopy, suggesting that the majority of platelet PDI is localized to the platelet surface. PDI activity against "scrambled" RNase was shown with intact platelets. The activity was inhibited by inhibitors of PDI and by an antibody against PDI. Other blood cells showed little PDI. Platelet surface PDI may play a role in the various physiological and pathophysiologic processes in which platelets are involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular Trafficking, Localization, and Mobilization of Platelet-Borne Thiol Isomerases.

OBJECTIVE Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes,...

متن کامل

Physical proximity and functional association of glycoprotein 1balpha and protein-disulfide isomerase on the platelet plasma membrane.

Platelet function is influenced by the platelet thiol-disulfide balance. Platelet activation resulted in 440% increase in surface protein thiol groups. Two proteins that presented free thiol(s) on the activated platelet surface were protein-disulfide isomerase (PDI) and glycoprotein 1balpha (GP1balpha). PDI contains two active site dithiols/disulfides. The active sites of 26% of the PDI on rest...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY A role for the thiol isomerase protein ERP5 in platelet function

Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor remode...

متن کامل

A role for the thiol isomerase protein ERP5 in platelet function.

Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor remode...

متن کامل

THROMBOSIS AND HEMOSTASIS Endothelium-derived but not platelet-derived protein disulfide isomerase is required for thrombus formation in vivo

Protein disulfide isomerase (PDI) catalyzes the oxidation reduction and isomerization of disulfide bonds. We have previously identified an important role for extracellular PDI during thrombus formation in vivo. Here, we show that endothelial cells are a critical cellular source of secreted PDI, important for fibrin generation and platelet accumulation in vivo. Functional PDI is rapidly secreted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 86 6  شماره 

صفحات  -

تاریخ انتشار 1995